Subscribe to RSS
DOI: 10.1055/s-0029-1245313
© Georg Thieme Verlag KG Stuttgart · New York
Diagnose von Myopathien
Diagnosis of MyopathiesPublication History
eingereicht: 28.1.2010
angenommen: 7.3.2010
Publication Date:
21 April 2010 (online)

Zusammenfassung
Auch wenn die Abklärung von Myopathien oft schwierig ist, sollte aus medizinischen und finanziellen Gründen bei gegebenem Verdacht eine Abklärung durchgeführt werden. Die Myopathiediagnostik basiert auf individueller Anamnese, Familienanamnese, Status, blutchemischen Untersuchungen in Ruhe und unter Belastung, elektrophysiologischen Untersuchungen, dem Muskel-MR, der Muskelbiopsie, dem Koffein-Halothan-Kontraktur-Test sowie genetischen Untersuchungen. Muskelenzyme sind als Screening hilfreich, können aber auch normal sein bzw. undulieren. Wiederholten symptomatischen Erhöhungen von Muskelenzymen sollte nachgegangen werden. Bei metabolischen Myopathien können spezielle Belastungstests die weitere Richtung für die Diagnostik vorgeben. Die Nadel-Elektromyografie kann bei Myopathien normal sein oder myogene, neurogene oder unspezifische Befunde zeigen. Mittels MR kann nicht nur die Verteilung betroffener Muskelgruppen erhoben werden, sondern auch der Grad trophischer Störungen quantifiziert werden. Die Muskelbiopsie wird hinsichtlich lichtmikroskopischer, elektronenmikroskopischer, biochemischer oder genetischer Veränderungen ausgewertet. Nur bei begründetem Verdacht auf eine Mutation in einem bestimmten Gen und Kenntnis des Vererbungsmodus sollte eine genetische Abklärung versucht werden. Der Nachweis der pathogenen Mutation erlaubt eine effiziente genetische Beratung, Prognoseerstellung und optimale Therapieplanung. Die Diagnose einer primären Myopathie erfordert immer auch eine Untersuchung der Familienmitglieder. Die Abklärung von Myopathien sollte wegen der diagnostischen, therapeutischen und prognostischen Implikationen so rasch und gründlich wie möglich erfolgen.
Abstract
Although the diagnostic work-up for myopathies can be difficult, it should be carried out for medical and financial reasons if the suspicion is supported by evidence. The diagnosis is based on the history, neurological investigation, blood chemical investigations at rest and under stress, electromyography, muscle MRI, biopsy, the in-vitro coffeine-halothan contracture test, and molecular genetic studies. There is some role for muscle enzyme determinations in the diagnostic work-up, although these values are frequently multifactorial. However, if muscle enzymes are repeatedly increased without explanation but in the presence of muscular symptoms, the diagnostic work-up should be initiated. Stress tests can be of some additional help. Needle electromyography may be normal, myogenic, neurogenic or non-specifically abnormal. Muscle MRI may show trophic disturbances, and may guide one to the muscle most adequate for biopsy. A muscle biopsy may be taken for a number of further investigations and may lead to the correct diagnosis. Only if there is a profound suspicion for a certain genetic defect, molecular genetic investigations should be initiated. In the case that a pathogenic mutation is found, genetic counselling, and assessment of the prognosis, and therapy can be initiated. For diagnostic, therapeutic and prognostic implications, diagnostic work-up should be carried out as soon as possible if myopathy is suspected.
Schlüsselwörter
Muskelkrankheit - neuromuskuläre Erkrankung - peripheres Nervensystem - Muskelbiopsie - Genetik - Behinderung
Keywords
muscle disease - neuromuscular disorder - peripheral nervous system - muscle biopsy - genetics - disability
Literatur
- 1
Pérez M, Ruiz J R, Fernández Del Valle M et al.
The second wind phenomenon in very young McArdle’s patients.
Neuromuscul Disord.
2009;
19
403-405
MissingFormLabel
- 2
Windpassinger C, Schoser B, Straub V et al.
An X-linked myopathy with postural muscle atrophy and generalized hypertrophy, termed
XMPMA, is caused by mutations in FHL1.
Am J Hum Genet.
2008;
82
88-99
MissingFormLabel
- 3
Allen R C, Jaramillo J, Black R et al.
Clinical characterization and blepharoptosis surgery outcomes in Hispanic New Mexicans
with oculopharyngeal muscular dystrophy.
Ophthal Plast Reconstr Surg.
2009;
25
103-108
MissingFormLabel
- 4
Monnier N, Laquerrière A, Marret S et al.
First genomic rearrangement of the RYR1 gene associated with an atypical presentation
of lethal neonatal hypotonia.
Neuromuscul Disord.
2009;
19
680-684
MissingFormLabel
- 5
Fu H D, Tang X F, Guo Y P.
Becker muscular dystrophy.
Chin Med J.
1989;
102
373-377
MissingFormLabel
- 6
Kriwalsky M S, Deschauer M, Eckert A W et al.
Orthognathic surgery in a case of infantile facioscapulohumeral muscular dystrophy
with macroglossia.
Oral Maxillofac Surg.
2008;
12
195-198
MissingFormLabel
- 7
Merlini L, Kaplan J C, Navarro C et al.
Homogeneous phenotype of the gypsy limb-girdle MD with the gamma-sarcoglycan C 283Y
mutation.
Neurology.
2000;
54
1075-1079
MissingFormLabel
- 8
Koga M, Abe M, Tateishi J et al.
Two autopsy cases of congenital muscular dystrophy of Fukuyama type – a typical and
an atypical cases.
No To Shinkei.
1984;
36
1103-1108
MissingFormLabel
- 9
Quijano-Roy S, Galan L, Ferreiro A et al.
Severe progressive form of congenital muscular dystrophy with calf pseudohypertrophy,
macroglossia and respiratory insufficiency.
Neuromuscul Disord.
2002;
12
466-475
MissingFormLabel
- 10
Meola G, Scarpini E, Manfredi L et al.
Infantile-acute acid maltase deficiency (Pompe’s disease): studies of muscle cultures.
Basic Appl Histochem.
1984;
28
245-255
MissingFormLabel
- 11
DiMauro S, Nicholson J F, Hays A P et al.
Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase deficiency.
Ann Neurol.
1983;
14
226-234
MissingFormLabel
- 12
Zeviani M, Van Dyke D H, Servidei S et al.
Myopathy and fatal cardiopathy due to cytochrome c oxidase deficiency.
Arch Neurol.
1986;
43
1198-1202
MissingFormLabel
- 13
Chauvet E, Sailler L, Carreiro M et al.
Symptomatic macroglossia and tongue myositis in polymyositis: treatment with corticosteroids
and intravenous immunoglobulin.
Arthritis Rheum.
2002;
46
2762-2764
MissingFormLabel
- 14
Gamez J, Armstrong J, Shatunov A et al.
Generalized muscle pseudo-hypertrophy and stiffness associated with the myotilin Ser55Phe
mutation: a novel myotilinopathy phenotype?.
J Neurol Sci.
2009;
277
167-171
MissingFormLabel
- 15
Arai A, Mitsuhashi S, Saito Y et al.
Nemaline (actin) myopathy with myofibrillar dysgenesis and abnormal ossification.
Neuromuscul Disord.
2009;
19
485-488
MissingFormLabel
- 16
Dupré N, Chrestian N, Bouchard J P et al.
Clinical, electrophysiologic and genetic study of non-dystrophic myotonia in French-Canadians.
Neuromuscul Disord.
2009;
19
330-334
MissingFormLabel
- 17
Pradhan S.
Clinical and magnetic resonance imaging features of ‘diamond on quadriceps’ sign in
dysferlinopathy.
Neurol India.
2009;
57
172-175
MissingFormLabel
- 18
Jungbluth H, Lillis S, Zhou H et al.
Late-onset axial myopathy with cores due to a novel heterozygous dominant mutation
in the skeletal muscle ryanodine receptor (RYR1) gene.
Neuromuscul Disord.
2009;
19
344-347
MissingFormLabel
- 19
Eger K, Jordan B, Habermann S et al.
Beevor’s sign in facioscapulohumeral muscular dystrophy: an old sign with new implications.
J Neurol.
2009;
(in press)
MissingFormLabel
- 20
Vondracek P, Hermanova M, Vodickova K et al.
An unusual case of congenital muscular dystrophy with normal serum CK level, external
ophthalmoplegia, and white matter changes on brain MRI.
Eur J Paediatr Neurol.
2007;
11
381-384
MissingFormLabel
- 21 Jerusalem F, Zierz S. Muskelerkrankungen. . Thieme; 1991
MissingFormLabel
- 22
Hogrel J Y, Laforêt P, Ben Yaou R et al.
A non-ischemic forearm exercise test for the screening of patients with exercise intolerance.
Neurology.
2001;
56
1733-1738
MissingFormLabel
- 23
Finsterer J, Milvay E.
Stress lactate in mitochondrial myopathy under constant, unadjusted workload.
Eur J Neurol.
2004;
11
811-816
MissingFormLabel
- 24
Zierz S, Meessen S, Jerusalem F.
Lactate and pyruvate blood levels in the diagnosis of mitochondrial myopathies.
Nervenarzt.
1989;
60
545-548
MissingFormLabel
- 25
Ogasahara S, Yorifuji S, Nishikawa Y et al.
Improvement of abnormal pyruvate metabolism and cardiac conduction defect with coenzyme
Q 10 in Kearns-Sayre syndrome.
Neurology.
1985;
35
372-377
MissingFormLabel
- 26
Trip J, Pillen S, Faber C G et al.
Muscle ultrasound measurements and functional muscle parameters in non-dystrophic
myotonias suggest structural muscle changes.
Neuromuscul Disord.
2009;
19
462-467
MissingFormLabel
- 27
Gallien S, Mahr A, Réty F et al.
Magnetic resonance imaging of skeletal muscle involvement in limb restricted vasculitis.
Ann Rheum Dis.
2002;
61
1107-1109
MissingFormLabel
- 28
Jeppesen T D, Quistorff B, Wibrand F et al.
31P-MRS of skeletal muscle is not a sensitive diagnostic test for mitochondrial myopathy.
J Neurol.
2007;
254
29-37
MissingFormLabel
- 29
Prelle A, Tancredi L, Sciacco M et al.
Retrospective study of a large population of patients with asymptomatic or minimally
symptomatic raised serum creatine kinase levels.
J Neurol.
2002;
249
305-311
MissingFormLabel
- 30
Finsterer J, Stöllberger C, Sehnal E et al.
Apical ballooning (Takotsubo syndrome) in mitochondrial disorder during mechanical
ventilation.
J Cardiovasc Med.
2007;
8
859-863
MissingFormLabel
- 31
Al-Dosary M, Whittaker R G, Haughton J et al.
Neuromuscular disease presentation with three genetic defects involving two genomes.
Neuromuscul Disord.
2009;
19
841-844
MissingFormLabel
- 32
Brockington M, Blake D J, Prandini P et al.
Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular
dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan.
Am J Hum Genet.
2001;
69
1198-1209
MissingFormLabel
- 33
Finsterer J, Stöllberger C.
Primary myopathies and the heart.
Scand Cardiovasc J.
2008;
42
9-24
MissingFormLabel
- 34
Dodson C C, Boachie-Adjei O.
Escobar syndrome (multiple pterygium syndrome) associated with thoracic kyphoscoliosis,
lordoscoliosis, and severe restrictive lung disease: a case report.
HSS J.
2005;
1
35-39
MissingFormLabel
- 35
Lampe A K, Bushby K M.
Collagen VI related muscle disorders.
J Med Genet.
2005;
42
673-685
MissingFormLabel
- 36
Garcia-Angarita N, Kirschner J, Heiliger M et al.
Severe nemaline myopathy associated with consecutive mutations E 74D and H 75Y on
a single ACTA1 allele.
Neuromuscul Disord.
2009;
19
481-484
MissingFormLabel
- 37
Flanigan K M, Kerr L, Bromberg M B et al.
Congenital muscular dystrophy with rigid spine syndrome: a clinical, pathological,
radiological, and genetic study.
Ann Neurol.
2000;
47
152-161
MissingFormLabel
- 38
Makri S, Clarke N F, Richard P et al.
Germinal mosaicism for LMNA mimics autosomal recessive congenital muscular dystrophy.
Neuromuscul Disord.
2009;
19
26-28
MissingFormLabel
- 39
Reimers C D.
Muskelerkrankungen.
Akt Neurol.
2009;
34
333-334
MissingFormLabel
- 40
Morandi L, Angelini C, Prelle A et al.
High plasma creatine kinase: review of the literature and proposal for a diagnostic
algorithm.
Neurol Sci.
2006;
27
303-311
MissingFormLabel
Josef Finsterer, MD, PhD
Krankenanstalt Rudolfstiftung
Postfach 20
1180 Wien
Österreich
Email: fifigs1@yahoo.de